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Observation of dissipationless transport
of 1D interacting bosonic atoms

The Drude conductivity

σDrude(ω) =
2iD

ω + i/τ
(1)

has a real (hence dissipative) part that tends to a delta function in the limit τ → ∞ of
infinite relaxation time,

lim
τ→∞

ReσDrude(ω) = 2πDδ(ω). (2)

The weight D of the delta function is referred to as the “Drude weight” (or also as the
“charge stiffness”). In the phenomenological Drude model of a gas of free electrons (density
n, mass m) one has Dfree = e2n/2m.

More generally, the conductivity of an interacting quantum gas can be decomposed into
a delta function contribution plus a term that is regular at ω = 0,

Reσ(ω) = 2πDδ(ω) + σregular(ω). (3)

A non-zero Drude weight D then indicates the existence of a dissipationless zero-frequency
mode. At finite temperature, in a generic interacting system (with Umklapp scattering to
relax the momentum), we expect any delta function contribution to be broadened, so D = 0
and transport is fully dissipative.

The paper from the Vienna group, Schüttelkopf et al., demonstrates an exceptional case
of nonzero Drude weight in an interacting gas of bosonic atoms confined to one dimension
(1D). Their short-range repulsion is described by the Lieb-Liniger Hamiltonian,

H =
1

2m

∑
i

p2i + g
∑
i<j

δ(xi − xj), (4)

which produces an integrable (as opposed to chaotic) dynamics by virtue of an infinite
number of conserved quantities.∗

∗The integrability is elementary in the hard-core limit g → ∞, when the interacting bosons may be
mapped onto free spinless fermions, with the Pauli exclusion principle taking care of the hard-core repulsion.
Remarkably enough, the Hamiltonian (4) remains integrable for any interaction strength, see the review on
1D bosons by Cazalilla et al.
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Atom Chip

atomic cloud

Integrability-protected dissipationless transport was explained by Zotos, Naef, and Prelovšek
(1997), as a consequence of the lower bound† for the Drude weight in the presence of a set
of independent conserved charges Qn:

2kBTD = lim
t→∞

1

tL

∫ t

0

⟨I(t′)I(0)⟩ dt′ ≥ 1

L

∑
n

|⟨IQn⟩|2

⟨Q2
n⟩

, (5)

in a system of size L, with ⟨· · · ⟩ the equilibrium expectation value at temperature T . A
finite right-hand-side of the inequality remains in the thermodynamic limit L → ∞ if each
expectation value scales ∝ L and if ⟨IQn⟩ ̸= 0 for some n, so if the current I is correlated
with some conserved charge Qn.

Evidence for dissipationless transport in an interacting 1D Bose gas was reported by
Ronzheimer et al. (2013), but without a direct measurement of the Drude weight, as now
reported by the Vienna group.

In their experiment an atomic cloud of Rb atoms is confined to a cigar-shaped magnetic
trap and cooled to temperatures near 10 nK. Only the lowest transverse sub-band is occupied,
the system is effectively 1D. Optical dipole potentials are superimposed onto the magnetic
trap along the longitudinal axis, over a length L = 100µm. The system is quenched at
time t = 0 by application of a chemical potential difference ∆µ (constant force ∆µ/L).
The subsequent evolution of the system is probed by measuring the time dependent atomic
density.

The figure (left panel) shows the difference ∆N(t) = NL(t) − NR(t) of the number of
atoms between the left and right halves of the system, for two different mean densities n̄
and potential differences. The density measurements are destructive, for each data point the
quench is repeated. Quadratic fits of the imbalances are plotted as solid lines. The t2 growth
of ∆N(t) implies a current I(t) = 1

2
∆N ′(t) that increases linearly with time, demonstrating

ballistic (dissipationless) transport.

†The inequality (5) for the current correlator is known as the Mazur bound. Let me add a personal
observation. Peter Mazur was my Ph.D. advisor. I never heard him mention the 1969 paper in which he
derived this inequality, and it had no impact in the literature until 1997. I find this one of the wonderful
things about our profession: A result that is true and nontrivial may lie dormant for decades, but at some
moment it will awaken.
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The Drude weight, obtained from

D = lim
∆µ→0

lim
t→∞

I(t)

t∆µ
≈ ∆N ′′(t)

2∆µ
, (6)

is also plotted in the figure (right panel), both for the constant-force quench and for an
alternative “bipartition” quench (consisting of a potential step halfway the trap that is
suddenly flattened at t = 0). The density dependence follows closely the linear n̄-dependence
of the ideal-gas Drude model. A generalized hydrodynamics for integrable systems provides
the theoretical framework for these experiments. The authors show that their measurements
of the Drude weight are in good accord with that theory.

More complex behaviors are predicted in other integrable systems. As discussed by
Karrasch, Prosen, and Heidrich-Meisner, in a 1D Fermi-Hubbard gas the spin transport is
ballistic (Dspin ̸= 0), but the charge transport at half-filling remains diffusive (Dcharge =
0 because particle-hole symmetry enforces ⟨IchargeQn⟩ = 0 for all conserved charges). A
Drude weight measurement would then demonstrate the unusual coexistence of ballistic and
diffusive transport.
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