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Phase separation processes touches our lives daily. Ice melts in a glass, water boils in a ket-
tle, and salad dressings that are oil-water mixtures demix over time [1]. About fifteen years
ago Brangwynne, et al. [2] discovered the existence of membraneless organelles - biological
assemblages that are formed via phase separation processes. A non-vanishing interfacial
tension leads to the formation of spherical drops, and manifests in the formation of a sharp
interface between the demixed phases in a cellular soup. This discovery ignited significant
interest within the physics and biology communities, leading to a rapidly expanding body of
research on phase separation processes. These processes span vast ranges of length and time
scales [3] and are linked to various human pathologies [4, 5]. It has long been known, how-
ever, that the cytoplasm is a complex mileu of biomacromolecules and thereby a viscoelastic
fluid [6, 7]. Consequently, the role of viscoelasticity in modifying phase separation processes
has been thoroughly investigated [8, 9]. Relatively less importance has been placed on the
role of elastic effects in modifying phase separation both in synthetic as well as biologically
reticulated networks and gels and is the subject of this commentary.

Pioneering experiments in this connection were carried out by the Dufresne group [10].
They considered the growth of phase-separated droplets (fluorinated oil) inside of a cross-
linked polymer network (silicone gel - consisting of a cross-linked silicone polymer network
in silicone oil) and conclusively proved the existence of a stable highly uniform microdroplet
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phase. The droplet size was tunable and dependent on the cross-link density, quench rate,
and loading of the minority fluid. This work sparked our interest in the subject as we had
been considering elastic effects on phase separation in the context of complex industrial mix-
tures [11, 12]. Among the many theoretical formulations that exist [13, 14] in predicting a
microdroplet phase in networked systems, we find the paper by Ronceray et al. (the first
recommended paper, referred to as PR, henceforth) most appealing and elegant on account
of its simplicity.

Ronceray et al.’s calculations employ a scaling theory backed by analytical arguments
and perturbation analysis of swollen network models. Coarsening processes that drive phase
separation lead to the growth of droplets inside an elastic matrix. The free energy penalty ∆g
per droplet volume, compared to an infinite droplet of phase separated liquid in the absence
of an elastic network has three distinct contributions: (i) the elastic energy stored in the
network, (ii) the interfacial tension, and (iii) the wetting energy of the filaments comprising
the network by the liquid. The mathematically non-trivial aspect lies in the evaluation of the
elastic energy resulting from the network deformation induced by the droplet, a dynamic ver-
sion of the classic Eshelby problem in continuum mechanics [15–17]. The elastic deformation
energy of the network outside the droplet of size rd to grow in a spherically symmetric infinite
medium is written as a functional W (λ1, λ2, λ3), where λi’s are the principal stretches. The
authors consider two different scenarios, depending on whether the impregnating fluid wets
or is excluded from the polymer network.

Consider an initial spherical inclusion of radius ξ, and a phase separated drop of radius
rd = r(ξ) that stretches the pore by a factor λd = rd/ξ (see Fig.1 of the SI of the PR paper).
The elastic energy outside this droplet that is stored in the network is therefore given by
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Rescaling the energies by u = R/ξ and introducing the variables s = dr/dR and t = r/R for
the radial and hoop stretches the elastic energy per unit volume is given by
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where vd =
(
4π
3

)
r3d the droplet volume.

For a permeating droplet the elastic energy has two contributions, the elastic energy
inside and outside the drop. The elastic energy inside the drop assuming a homogeneous
and isotropic deformation of stretch λi the total elastic energy is given by
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which leads to
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W (λi, λi, λi) + fout(λi). (4)
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Thus the elastic energy of the droplet per unit volume Eel

vd
∼ αG, where α is a material

dependent constant and G is the shear modulus of the network (proportional to the local
cross-link density). The phase boundary, i.e. the line demarcating regions of parameter
space between a micro-droplet phase and a droplet that extrudes all the network filaments
forming a cavity, is given by a balance of the elastic deformation and interfacial energies.
The interfacial energy of a microdroplet of radius r ∼ ξ is given by Esurf ∼ 4πξ2γ, where
γ denotes the surface tension between the two liquids. The surface free energy per droplet
volume is thus given by

Esurf

vd
∼ 3γ

ξ
. The ratio of the elastic and surface energy per unit

volume defines a dimensionless parameter, the elasto-capillary number

h ≡ 3γ

ξG
. (5)

Thus, for h < α, i.e., for low surface tensions, or large values of shear modulus G the ther-
modynamic stable phase is one composed of several pore-sized microdroplets. The choice of
the first recommended PR paper for this commentary is based on the simplicity and elegance
of the analysis leading to this significant result. A mean-field calculation that describes the
phase boundary in this regime accounting for the free energies of mixing, interfacial tension
and droplet deformation was developed subsequently [18].

The other interesting regime concerns the liquid wetting the network. An additional
energy cost for wetting the network

Ewet =
4πr3

3
(1− φ)σp, (6)

where σp is the permeation stress and φ denotes the fraction of the network that is expelled
from the droplet φ = 1 − λ3

i (λi is the homogeneous, isotropic deformation stretch factor
introduced earlier). The ratio of the wetting and deformation energies per unit volume of a
droplet leads to another dimensionless number, the permeo-elastic number

p ≡ σp

G
, (7)

which measures the degree of network deformation induced by the permeation stress. Thus
for p > α the fluid-network repulsion is strong enough to cause cavitation, while for p < α
the filaments wet the fluid. These two dimensionless parameters h, and p completely deter-
mine the morphology of droplets in networked systems as shown in Fig. 1.

We now address a crucial question about the phase-separated microdroplet phase previ-
ously discussed: the equilibrium thermodynamics of concentrated microdroplets within an
elastic network. Existing models [10, 13, 14, 18] (including the first recommended PR paper),
utilize local elastic theories to calculate the morphology of droplets undergoing phase sepa-
ration in polymer networks. These calculations consider a dilute concentration of droplets
where the deformation field induced by a droplet does not affect the thermodynamics and
growth kinetics of another one nearby. This notion is challenged in the recent study by
the Zwicker group (the second recommended paper referred to as DZ henceforth). Their
argument stems from identification of length-scales in a phenomenological free energy that
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Figure 1: Phase diagram of droplets undergoing liquid-liquid phase separation (LLPS) in
elastic networks from scaling arguments (Fig. 2 of the first recommended PR paper, repro-
duced with permission). The two dimensionless numbers h, the elastocapillary number (a
ratio of the surface and elastic deformation energies per-unit volume), and p, the permeo-
elastic number (the ratio of the wetting and elastic deformation energies per unit volume)
determine the thermodynamically stable phases, (i) the cavitated, (ii) the microdroplet, and
(iii) the permeated.

describes phase separation in an elastic network, with ϕ being the volume fraction of the
network as in Flory-Huggin’s theory.

Flocal[F, ϕ] =
kBT

ν

∫ [
fel(F) + f0(ϕ) + κ|∇ϕ|2

]
dx. (8)

Here, F is the deformation tensor, fel(F) the elastic deformation energy, while f0(ϕ) cor-
responds to the mean-field mixing free-energies that leads to phase separation. The third
term that accounts for energetic penalty for variations of the ϕ field and hence models the
interfacial tension [19]. Zwicker’s arguments stem from the existence of a single length scale
in the problem dependant on κ and the need for an additional length-scale to explain the
bicontinuous phases observed in elastic systems recently [20]. Their solution is in assuming
the network as a linear elastic solid and adding a non-local contribution to the elastic energy
of the form

Fnonlocal[ϕ] =
1

2

∫
ϵ(X)σnonlocal(X)dX, (9)

where the nonlocal stress σnonlocal(X) is given by

σnonlocal(X) = E

∫
ϵ(X ′)gξ(X

′ −X)dX ′ (10)
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with ϵ(X) = ϕ0

ϕ(X)
− 1 corresponding to the strain in the network, with

gξ(X) =

√
2

πξ2
exp

(
−2X2

ξ2

)
. (11)

Thus, a second characteristic length ξ (not to be confused with the variable introduced
earlier in the first recommended PR paper) that quantifies the non-locality of the mesh is
introduced. The interplay between the elastocapillary length h and that governing non-local
heterogeneities ξ qualitatively matches the experimental results.

What is the microscopic origin of this emergent length scale in networked systems? How
does it depend on the material parameters? Does this have a role in dictating the biology
of cellular condensates? These are fundamental questions that need answering and the
developments outlined here offer exciting possibilities. It is the view of the author that
a throwback at the past on statistical mechanics of phase transitions applied to magnetic
systems and alloys can offer helpful insights. For example, can one get a regular arrangement
of droplets in a cross-linked network? If after all elastic interactions are important, it would
indeed influence the underlying microstructure of the droplets. This is a classic problem first
considered in context of magnetic systems undergoing phase transitions on compressible cubic
lattices [21]. Another important question relates to the ordering kinetics of phase separated
droplets in a medium where elastic interactions are important [22, 23]. This has also been
investigated in the past in context of metallic alloys undergoing phase separation [24, 25].
Biological systems are however active materials driven far from equilibrium and the theories
of phase ordering kinetics developed need to be reviewed carefully for systems where a
long-time Boltzmannian probability distribution P [ϕ] ∼ e−βF [ϕ] is not the equilibrium state.
Synergistic experiment-theory collaboration on specific systems would pave the way forward.
The gauntlet has been cast, and the future of elastic microphase separation is certainly
looking bright.

References

[1] E. Sprujit, Commun Chem 6, 23 (2023).

[2] C. P. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege, J.
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