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If we have a well isolated many body quantum system which is time evolving according
to its own Hamiltonian, then how should we understand the long time limit of the dynam-
ics? Traditional textbooks on quantum statistical mechanics assume that the system goes to
thermal equilibrium at long times, at a temperature set by the energy density of the initial
condition. However, at least two exceptions to this paradigm are well known. One exception
is integrable systems, which have an extensive number of explicit conservation laws. Another
is many body localized systems, which have an extensive number of emergent conservation
laws. Both integrable and many body localized systems can evade ergodicity, however for
integrable systems it remains unknown whether ergodicity breaking is robust to small per-
turbations of the Hamiltonian, whereas many body localization has only been proven to
exist for strongly disordered spin chains [1]. Do there exist alternative routes to ergodicity
breaking, which do not rely on the existence of an extensive number of (explicit or emergent)
conservation laws, or on strong disorder?

Examples of ergodicity breaking Hamiltonians which are neither integrable nor many
body localized have been known in the theory literature for some years. For example, [2]
identified a tower of exact non-thermal eigenstates embedded in the spectrum of the (non-
integrable, disorder free) spin-1 AKLT Hamiltonian. Meanwhile, Shiraishi and Mori [3]
proposed a generic method by which non-thermal eigenstates could be ‘embedded’ into the
spectrum of an otherwise thermalizing Hamiltonian. The search for new mechanisms for
breaking ergodicity really exploded in interest with the publication of the paper by Bernien
et al, which provided an experimental example of a system that apparently broke ergodicity,
without making use of either integrability or many body localization.
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FIG. 6: Emergent oscillations in many-body dynamics after sudden quench. a, Schematic sequence (top, showing
�(t)) involves adiabatic preparation and then a sudden quench to single-atom resonance. The single-atom trajectories are
shown (bottom) for a 9 atom cluster, with the colour scale indicating the Rydberg probability. We observe that the initial
crystal with a Rydberg excitation at every odd trap site (left inset) collapses after the quench, and a crystal with an excitation
at every even site builds up (middle inset). At a later time the initial crystal revives with a frequency of ⌦/1.38(1) (right
inset). Error bars denote 68% confidence intervals. b, Domain-wall density after the quench. The dynamics decay slowly on
a timescale of 0.88 µs. Shaded region represents the standard error of the mean. Solid blue line is a fully coherent matrix
product state (MPS) simulation with bond dimension D = 256, taking into account measurement fidelity. c, Toy model of
non-interacting dimers (see main text). Blue (white) circles represent atoms in state |gi (|ri). d, Numerical calculations of the
dynamics after a quench, starting from an ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall density
(red) and the growth of entanglement entropy of the half chain (13 atoms; blue) are shown as functions of time after the
quench. Dashed lines take into account only nearest-neighbour (NN) blockade constraint. Solid lines correspond to the full
1/R6 interaction potential.

quench dynamics of Rydberg crystals initially prepared
deep in the Z2 ordered phase, as we change the detun-
ing �(t) suddenly to the single-atom resonance � = 0
(Fig. 6a). After such a quench, we observe oscillations of
many-body states between the initial crystal and a com-
plementary crystal in which each internal atomic state is
inverted (Fig. 6a). Remarkably, we find that these oscil-
lations are robust, persisting over several periods with a
frequency that is largely independent of the system size.
This is confirmed by measuring the dynamics of the do-
main wall density, which signals the appearance and dis-
appearance of the crystalline states, shown in Fig. 6b for
arrays of 9 and 51 atoms. We find that the initial crystal
repeatedly revives with a period that is slower by a fac-
tor of 1.38(1) (error denotes the uncertainty in the fit)
compared to the Rabi-oscillation period for independent,
non-interacting atoms.

DISCUSSION

Several important features of these experimental obser-
vations should be noted. First, the Z2 ordered state can-
not be characterized by a simple thermal ensemble. More
specifically, if an e↵ective temperature is estimated based
on the experimentally determined, corrected domain wall
density of 0.1, then the corresponding thermal ensemble
predicts a correlation length ⇠th = 4.48(3), which is sig-
nificantly longer than the measured value ⇠ = 3.03(6)
(Methods). Such a discrepancy is also reflected in dis-
tinct probability distributions for the number of domain
walls (Fig. 5c). These observations suggest that the sys-
tem does not thermalize within the timescale of the Z2

state preparation.

Even more striking is the coherent and persistent oscil-
lation of the crystalline order after the quantum quench.
With respect to the quenched Hamiltonian (� = 0), the
energy density of our Z2 ordered state corresponds to
that of an infinite-temperature ensemble within the man-
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Figure 1: The experiment of Bernien et al realizes a 51 qubit system with a parameter space
that contains regimes where the ground state is a charge density wave (left panel). The
system is initialized in a period two charge density wave, and then quenched to a parameter
regime where this state is at high energy density. The thermalization of such an initial
condition would proceed through the proliferation of domain walls in the charge density wave
order. However, experimental monitoring of the dynamics (right panel) indicates that the
domain wall density is an oscillatory function of time, corresponding to a series of (damped)
revivals of the initial condition. These revivals are indicative of an approximate ergodicity
breaking in this system. Figures are from arXiv:1707.04344, Nature 551, 579-584 (2017)

The work by Bernien et al experimentally realized a system of 51 qubits based on Rydberg
atoms. These Rydberg qubits can be viewed as two level systems - but with a constraint. No
two adjacent qubits can be simultaneously in the excited state. The effective Hamiltonian for
the system takes the form H =

∑
i PiXi+1Pi+2, where Xi is the Pauli X operator acting on

site i, and Pi = 1
2
(1+Zi) is the projector onto the ‘unexcited’ state. We will henceforth refer

to this as the PXP Hamiltonian. It can be confirmed, both experimentally and especially
numerically, that ‘generic’ initial states appear to thermalize under the action of the PXP
Hamiltonian. However, Bernien et al explored the dynamics starting from an initial condition
where every other site was excited (period 2 density wave). This corresponds to an initial
condition that is at ‘infinite temperature’ within the constrained Hilbert space acted on
by the initial Hamiltonian. While the density wave order originally decays it then revives
periodically, and these revivals persist to times much longer than the thermalization time for
generic initial states. Thus, the dynamics starting from this specific initial condition appears
non-ergodic - but does not fall within the paradigms of either many body localization or
integrability. What is going on?

A possible answer was advanced by Turner et al. They explored the spectrum of the PXP
Hamiltonian numerically and observed that while most of the spectrum appeared thermal,
there was a ‘band’ of non-thermal, low entanglement states embedded within the spectrum,
and these states had a high overlap with the charge density wave initial condition leading to
periodic revivals in the Bernien et al experiment. These special states were dubbed ‘many
body scars’ in analogy with the single particle scar states associated with periodic orbits
in otherwise chaotic single particle systems [4]. This catalyzed an explosion of theoretical
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interest in the PXP Hamiltonian. For example, [5] pointed out that the PXP Hamiltonian
was ‘close to integrable,’ while [6] made explicit the connection between the many body scar
states of Turner et al and the Shiraishi-Mori formalism [3], [7] made explicit the connection
to periodic orbits, and [8] analytically identified exact non-thermal eigenstates embedded
within the spectrum. These are just some of the early contributions to what is by now
a large literature studying the PXP model and the peculiar ergodicity breaking that arises
therein - I have not attempted to provide a comprehensive review, suffice to say the dynamics
of this (and related) models is a rich subject under rapid development.

Is the PXP Hamiltonian unique, or is there a more general understanding of such ‘par-
tially non-ergodic’ systems? Moreover, most of the existing literature on scars focuses on
specific Hamiltonians (like the PXP Hamiltonian). Does the essential phenomenology sur-
vive small perturbations in the thermodynamic limit? This would appear to be a necessary
condition for a true ‘phase of matter.’ It seems worth mentioning in this context the recent
demonstration [9, 10] that just two local conservation laws can be sufficient to ensure the
appearance of a subspace exponentially large in system volume, within which the dynamics
is provably localized, even while the rest of the spectrum may be thermalizing, and with
the localized subspace provably robust to arbitrary local perturbations respecting the two
conservation laws. This result extends to systems in d spatial dimensions with d + 1 con-
servation laws [11], and provides a proof of principle that partially non-ergodic ‘phases’ can
exist. What a complete theory of ‘partially non-ergodic’ systems looks like remains an open
question, but one under intense investigation.
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