Some bacteria more than sum of parts

Gut bacterial aggregates as living gels
Authors: Brandon H. Schlomann, and Raghuveer Parthasarathy
eLife 2021;10:e71105; DOI: 10.7554/eLife.71105

Recommended with a commentary by Srividya Iyer-Biswas, Purdue University and Santa Fe Institute
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_September_2021_02
https://doi.org/10.36471/JCCM_September_2021_02

Moiré bands in transitional metal dichalcogenides: continuous Mott transition, quantum anomalous Hall and more

1. Quantum criticality in twisted transition metal dichalcogenides
Authors: Augusto Ghiotto, En-Min Shih, Giancarlo S. S. G. Pereira, Daniel A. Rhodes, Bumho Kim, Jiawei Zang, Andrew J. Millis, Kenji Watanabe, Takashi Taniguchi, James C. Hone, Lei Wang, Cory R. Dean, and Abhay N. Pasupathy
Nature 597, 345–349 (2021); DOI: 10.1038/s41586-021-03815-6
arXiv:2103.09796

2. Continuous Mott transition in semiconductor moiré superlattices
Authors: Tingxin Li, Shengwei Jiang, Lizhong Li, Yang Zhang, Kaifei Kang, Jiacheng Zhu, Kenji Watanabe, Takashi Taniguchi, Debanjan Chowdhury, Liang Fu, Jie Shan, and Kin Fai Mak
Nature 597, 350–354 (2021); DOI: 10.1038/s41586-021-03853-0
arXiv:2103.09779

3. Quantum anomalous Hall effect from intertwined moiré bands
Authors: Tingxin Li, Shengwei Jiang, Bowen Shen, Yang Zhang, Lizhong Li, Trithep Devakul, Kenji Watanabe, Takashi Taniguchi, Liang Fu, Jie Shan, and Kin Fai Mak
arXiv:2107.01796

Recommended with a commentary by Patrick A. Lee, MIT
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_September_2021_03
https://doi.org/10.36471/JCCM_September_2021_03

Jordan-Wigner Transformation in Higher Dimensions

1. Exact bosonization in two spatial dimensions and a new class of lattice gauge theories
Authors: Yu-An Chen, Anton Kapustin, and Djordje Radicevic
Annals of Physics 393, 234 (2018); DOI: 10.1016/j.aop.2018.03.024
arXiv:1711.00515

2. Constraints of kinematic bosonization in two and higher dimensions
Authors: Arkadiusz Bochniak, Blazej Ruba, Jacek Wosiek, and Adam Wyrzykowski
Phys. Rev. D 102, 114502 (2020); DOI: 10.1103/PhysRevD.102.114502
arXiv:2004.00988

3. Symmetric Jordan-Wigner transformation in higher dimensions
Authors: Hoi Chun Po
arXiv:2107.10842

Recommended with a commentary by Masaki Oshikawa, University of Tokyo
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_August_2021_01
https://doi.org/10.36471/JCCM_August_2021_01

Hofstadter superconductors

Theory of Hofstadter Superconductors
Authors: Daniel Shaffer, Jian Wang, Luiz H. Santos
arXiv:2108.04831

Recommended with a commentary by Jörg Schmalian, Karlsruhe Institute of Technology
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_August_2021_02
https://doi.org/10.36471/JCCM_August_2021_02

Generalized Hydrodynamics for integrable systems

1. Generalized hydrodynamics in strongly interacting 1D Bose gases
Authors: Neel Malvania, Yicheng Zhang, Yuan Le, Jerome Dubail, Marcos Rigol, and David S. Weiss
arXiv:2009.06651

2. Generalized HydroDynamics on an Atom Chip
Authors: Max Schemmer, Isabelle Bouchoule, Benjamin Doyon, and Jerome Dubail
Phys. Rev. Lett. 122, 090601 (2019); DOI: 10.1103/PhysRevLett.122.090601
arXiv:1810.07170

Recommended with a commentary by Thierry Giamarchi, University of Geneva
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_July_2021_01
https://doi.org/10.36471/JCCM_July_2021_01

Towards a global view of phenotype space

Global constraints within the developmental program of the Drosophila wing
Authors: Vasyl Alba, James E. Carthew, Richard W. Carthew, and Madhav Mani
eLife 10, e66750 (2021); DOI: 10.7554/eLife.66750

Recommended with a commentary by David K. Lubensky, University of Michigan
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_July_2021_02
https://doi.org/10.36471/JCCM_July_2021_02

Deja Vu, on a different stage

A strange metal in a bosonic system
Authors: Chao Yang, Haiwen Liu, Yi Liu, Jiandong Wang, Sishuang Wang, Yang Wang, Qianmei He, Yue Tang, Jian Wang, X.C. Xie, James M. Valles Jr., Jie Xiong, and Yanrong Li
arXiv:2105.02654

Recommended with a commentary by Chandra Varma, University of California, Berkeley and University of California, Riverside
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_July_2021_03
https://doi.org/10.36471/JCCM_July_2021_03

Majorana modes in artificial atomic chains: a new hope

1. Topological Shiba bands in artificial spin chains on superconductors
Authors: L. Schneider, P. Beck, T. Posske, D. Crawford, E. Mascot, S. Rachel, R. Wiesendanger, and J. Wiebe
Nat. Phys. (2021); DOI:10.1038/s41567-021-01234-y
arXiv:2104.11497

2. Controlled length-dependent interaction of Majorana modes in Yu-Shiba-Rusinov chains
Authors: L. Schneider, P. Beck, J. Neuhaus-Steinmetz, T. Posske, J. Wiebe, and R. Wiesendanger
arXiv:2104.11503

Recommended with a commentary by Anton Akhmerov, Kavli Institute of Nanoscience, Delft University of Technology
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_June_2021_01
https://doi.org/10.36471/JCCM_June_2021_01

Correlated phases for fermions on a Kagome lattice

Discovery of unconventional chiral charge order in kagome superconductor KV3Sb5
Authors: Yu-Xiao Jiang, Jia-Xin Yin, M. Michael Denner, Nana Shumiya, Brenden R. Ortiz, Gang Xu, Zurab Guguchia, Junyi He, Md Shafayat Hossain, Xiaoxiong Liu, Jacob Ruff, Linus Kautzsch, Songtian S. Zhang, Guoqing Chang, Ilya Belopolski, Qi Zhang, Tyler A. Cochran, Daniel Multer, Maksim Litskevich, Zi-Jia Cheng, Xian P. Yang, Ziqiang Wang, Ronny Thomale, Titus Neupert, Stephen D. Wilson, and M. Zahid Hasan
arXiv:2012.15709

Recommended with a commentary by Rahul Nandkishore, University of Colorado Boulder
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_June_2021_02
https://doi.org/10.36471/JCCM_June_2021_02

Rigidity Percolation in Embryo Morphogenesis: Physics meets Biology (Again)

Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions
Authors: Nicoletta I. Petridou, Bernat Corominas-Murtra, Carl-Philipp Heisenberg, and Edouard Hannezo
Cell, 184(7):1914–1928 (2021); DOI: 10.1016/j.cell.2021.02.017

Recommended with a commentary by Sumit Sinha and D. Thirumalai, University of Texas at Austin
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_June_2021_03
https://doi.org/10.36471/JCCM_June_2021_03

Tantalates Transcend Titanates

1. Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces
Authors: Changjiang Liu, Xi Yan, Dafei Jin, Yang Ma, Haw-Wen Hsiao, Yulin Lin, Terence M. Bretz-Sullivan, Xianjing Zhou, John Pearson, Brandon Fisher, J. Samuel Jiang, Wei Han, Jian-Min Zuo, Jianguo Wen, Dillon D. Fong, Jirong Sun, Hua Zhou, and Anand Bhattacharya
Science 371, 716 (2021); DOI: 10.1126/science.aba5511
arXiv:2004.07416

2. Two-Dimensional Superconductivity at the LaAlO3/KTaO3(110) Heterointerface
Authors: Zheng Chen, Zhongran Liu, Yanqiu Sun, Xiaoxin Chen, Yuan Liu, Hui Zhang, Hekang Li, Meng Zhang, Siyuan Hong, Tianshuang Ren, Chao Zhang, He Tian, Yi Zhou, Jirong Sun, and Yanwu Xie
Phys. Rev. Lett. 126, 026802 (2021); DOI: 10.1103/PhysRevLett.126.026802
arXiv:2011.08526

3. Superconductor-Metal Quantum Transition at the EuO/KTaO3 Interface
Authors: Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han
Chin. Phys. Lett. 37, 117401 (2020); DOI: 10.1088/0256-307X/37/11/117401
arXiv:2010.12204

Recommended with a commentary by Dirk van der Marel, University of Geneva
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_May_2021_01
https://doi.org/10.36471/JCCM_May_2021_01

All the questions about biophysics

Harness the hubris: useful things physicists could do in biology
Authors: V. Adrian Parsegian and Commentary by Robert H. Austin
Physics Today 50, 7, 23 (1997); DOI: 10.1063/1.881805
Full-text is also available at ResearchGate

Recommended with a commentary by Ramin Golestanian, Max Planck Institute for Dynamics and Self-Organization (Göttingen) and University of Oxford
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_May_2021_02
https://doi.org/10.36471/JCCM_May_2021_02

Proposals to Realize Topological Superconductivity in Cuprates by Twisting and Stacking

1. High-temperature topological superconductivity in twisted double layer copper oxides
Authors: Oguzhan Can, Tarun Tummuru, Ryan P. Day, Ilya Elfimov, Andrea Damascelli, and Marcel Franz
Nature Physics 17, 519-524 (2021); DOI: 10.1038/s41567-020-01142-7
arXiv:2012.01412

2. Magic angles and current-induced topology in twisted nodal superconductors
Authors: Pavel A. Volkov, Justin H. Wilson, and J. H. Pixley
arXiv:2012.07860

Recommended with a commentary by Ashvin Vishwanath, Harvard University
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_May_2021_03
https://doi.org/10.36471/JCCM_May_2021_03

A pathway to parafermions

Induced superconductivity in the fractional quantum Hall edge
Authors: Önder Gül, Yuval Ronen, Si Young Lee, Hassan Shapourian, Jonathan Zauberman, Young Hee Lee, Kenji Watanabe, Takashi Taniguchi, Ashvin Vishwanath, Amir Yacoby, and Philip Kim
arXiv:2009.07836

Recommended with a commentary by Jason Alicea, California Institute of Technology
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_April_2021_01
https://doi.org/10.36471/JCCM_April_2021_01

One-way supercurrent controlled by magnetic field

Observation of superconducting diode effect
Authors: Fuyuki Ando, Yuta Miyasaka, Tian Li, Jun Ishizuka, Tomonori Arakawa, Yoichi Shiota, Takahiro Moriyama, Youichi Yanase, and Teruo Ono
Nature, 584, 373 (2020); DOI: 10.1038/s41586-020-2590-4

Recommended with a commentary by Liang Fu, Massachusetts Institute of Technology
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_April_2021_02
https://doi.org/10.36471/JCCM_April_2021_02

What happens if a drunkard is asked to walk a full circle around a lake in a short time?

Brownian flights over a circle
Authors: Alexander Vladimirov, Senya Shlosman, and Sergei Nechaev
Phys. Rev. E 102, 012124 (2020); DOI: 10.1103/PhysRevE.102.012124

Recommended with a commentary by Alexander Y. Grosberg, New York University
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_April_2021_03
https://doi.org/10.36471/JCCM_April_2021_03

Determining dynamics from statics in living tissue

Anisotropy links cell shapes to tissue flow during convergent extension
Authors: X. Wang, M. Merkel, L. B. Sutter, G. Erdemci-Tandogan, M. L. Manning, and K. E. Kasza
Proc. Natl. Acad. Sci. 117, 13541-13551 (2020); DOI: 10.1073/pnas.1916418117

Recommended with a commentary by John D. Treado (Yale University), Dong Wang (Yale University), Yuxuan Cheng (Yale University), Mark D. Shattuck (City College of New York), Corey S. O’Hern (Yale University)
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_March_2021_01
https://doi.org/10.36471/JCCM_March_2021_01

Taking the measure of quantum dynamics

1. Quantum Zeno effect and the many-body entanglement transition
Authors: Y. Li, X. Chen, and M.P. A. Fisher
Phys. Rev. B 98, 205136 (2018); DOI: 10.1103/PhysRevB.98.205136

2. Measurement-Induced Phase Transitions in the Dynamics of Entanglement
Authors: B. Skinner, J. Ruhman, and A. Nahum
Phys. Rev. X 9, 031009 (2019); DOI: 10.1103/PhysRevX.9.031009

3. Unitary-projective entanglement dynamics
Authors: A. Chan, R.M. Nandkishore, M. Pretko, and G. Smith
Phys. Rev. B 99, 224307 (2019); DOI: 10.1103/PhysRevB.99.224307

4. Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition
Authors: S. Choi, Y. Bao, X.-L. Qi, and E. Altman
Phys. Rev. Lett. 125, 030505 (2020); DOI: 10.1103/PhysRevLett.125.030505

5. Dynamical Purification Phase Transition Induced by Quantum Measurements
Authors: M.J. Gullans and D.A. Huse
Phys. Rev. X 10, 041020 (2020); DOI: 10.1103/PhysRevX.10.041020

6. Measurement-induced criticality in random quantum circuits
Authors: C.-M. Jian, Y.-Z. You, R. Vasseur, and A.W.W. Ludwig
Phys. Rev. B 101, 104302 (2020); DOI: 10.1103/PhysRevB.101.104302

Recommended with a commentary by S. A. Parameswaran, University of Oxford
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_March_2021_02
https://doi.org/10.36471/JCCM_March_2021_02

Plasticity is a topological business

The Topological Origin of the Peierls-Nabarro Barrier
Authors: Brook J. Hocking, Helen S. Ansell, Randall D. Kamien, and Thomas Machon
arXiv:2103.0205 (2021)

Recommended with a commentary by Brian Skinner, Ohio State University
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_March_2021_03
https://doi.org/10.36471/JCCM_March_2021_03

Superconductivity in the 2D Hubbard model: yes, no, or maybe?

Absence of superconductivity in the pure two-dimensional Hubbard Model
Authors: Mingpu Qin, Chia-Min Chung, Hao Shi, Ettore Vitali, Claudius Hubig, Ulrich Schollwöck, Steven R. White, and Shiwei Zhang (Simons Collaboration on the Many-Electron Problem)
Phys. Rev. X 10, 031016 (2020); DOI: 10.1103/PhysRevX.10.031016

Recommended with a commentary by Andrey V Chubukov, University of Minnesota
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_February_2021_01
https://doi.org/10.36471/JCCM_February_2021_01

google

google