Getting a grip on quantum criticality in metals

1.Ising nematic quantum critical point in a metal: a Monte Carlo study.
Authors:Yoni Schattner, Samuel Lederer, Steven A. Kivelson, Erez Berg.
arXiv:1511.03282

2.The nature of effective interaction in cuprate superconductors: a sign-problem-free quantum Monte-Carlo study.
Authors: Zi-Xiang Li, Fa Wang, Hong Yao, Dung-Hai Lee.
arXiv:1512.04541

3.Competing Orders in a Nearly Antiferromagnetic Metal.
Authors: Yoni Schattner, Max H. Gerlach, Simon Trebst, Erez Berg.
arXiv:1512.07257

Recommended with a commentary by Jörg Schmalian, Karlsruhe Institute of Technology.
|View Commentary|

DOI: 10.36471/JCCM_January_2016_02
https://doi.org/10.36471/JCCM_January_2016_02

Measuring Entanglement by Swapping Quantum Twins

Measuring entanglement entropy through the interference of quantum many-body twins.
Authors: Rajibul Islam, Ruichao Ma, Philipp M. Preiss, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Markus Greiner.
arXiv:1509.01160

Recommended with a commentary by Ashvin Vishwanath, UC Berkeley.
|View Commentary|

DOI: 10.36471/JCCM_January_2016_03
https://doi.org/10.36471/JCCM_January_2016_03

Spontaneous emergence of autocatalytic information-coding polymers

Spontaneous emergence of autocatalytic information-coding polymers.
Authors: Alexei V. Tkachenko and Sergei Maslov.
J. Chem. Phys. 143,045102(2015)

Recommended with a commentary by Alexander Grosberg, NYU.
|View Commentary|

DOI: 10.36471/JCCM_December_2015_01
https://doi.org/10.36471/JCCM_December_2015_01

Experimental Studies of Many-Body Localization in Quasi-Random Optical Lattices

1. Observation of many-body localization of interacting fermions in a quasi-random optical lattice.
Authors: M. Schreiber, S. S. Hodgman, P. Bordia, Henrik P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider and I. Bloch.
Science 349,842(2015)

2. Coupling Identical 1D Many-Body Localized Systems.
Authors: P. Bordia, H. P. Luschen, S. S. Hodgman, M. Schreiber, I. Bloch and U. Schneider.
arXiv:1509.00478

Recommended with a commentary by Catherine Kallin, McMaster University.
|View Commentary|

DOI: 10.36471/JCCM_December_2015_02
https://doi.org/10.36471/JCCM_December_2015_02

PARADIGM LOST – Where the Missing Entropy Goes in Spin Ice

Absence of Pauling’s Residual Entropy in Thermally Equilibrated Dy2Ti2O7.
Authors: D. Pomeransky, L.R. Yaraskavitch, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, and J.B. Kycia.
Nature Physics, 9,353(2013)

Recommended with a commentary by A. P. Ramirez and B. S. Shastry, University of California, Santa Cruz.
|View Commentary|

DOI: 10.36471/JCCM_December_2015_03
https://doi.org/10.36471/JCCM_December_2015_03

Inserting defects into graphene: response by curvature and strain

Bending Rules in Graphene Kirigami.
Authors: B.F. Grosso and E.J. Mele.
Phys. Rev. Lett. 115,195501(2015)

Recommended with a commentary by Benny Davidovitch, Physics Department, UMass Amherst..
|View Commentary|

DOI: 10.36471/JCCM_November_2015_01
https://doi.org/10.36471/JCCM_November_2015_01

Even-denominator fractional quantum Hall physics in ZnO

Even-denominator fractional quantum Hall physics in ZnO.
Authors: J. Falson, D. Maryenko, B. Friess, D. Zhang, Y. Kozuka, A. Tsukuzaki, J. H. Smet, and M. Kawasaki.
Nature Physics 11,347(2015)

Recommended with a commentary by Bertrand I. Halperin, Harvard University.
|View Commentary|

DOI: 10.36471/JCCM_November_2015_02
https://doi.org/10.36471/JCCM_November_2015_02

Colored Noise Models of Active Particles

1. Multidimensional stationary probability distribution for interacting active particles.
Authors: C. Maggi, U.M.B. Marconi, N. Gnan, and R. Di Leonardo.
Scientific Reports, 5,10742(2015)
2. Effective interactions in active Brownian suspensions.
Authors: T.F.F. Farage, P. Krinninger, and J.M. Brader,
Physical Review E 91,042310(2015)

Recommended with a commentary by Mike Cates, University of Cambridge, and Cesare Nardini, University of Edinburgh.
|View Commentary|

DOI: 10.36471/JCCM_October_2015_01
https://doi.org/10.36471/JCCM_October_2015_01

Quantum Hydrodynamic Transport in Graphene

1.Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene.
Authors: Andrew Lucas, Jesse Crossno, Kin Chung Fong, Philip Kim, Subir Sachdev.
arXiv:1510.01738

2.Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene.
Authors: Jesse Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, Achim Harzheim, Andrew Lucas, Subir Sachdev, Philip Kim, Takashi Taniguchi, Kenji Watanabe, Thomas A. Ohki, Kin Chung Fong.
arXiv:1509.04713

3.Negative local resistance due to viscous electron backflow in graphene.
Authors: D.A.Bandurin, I.Torre, R.Krishna Kumar, M.Ben Shalom, A. Tomadin, A.Principi, G.H. Auton, E.Khestanova, K.S. Novoselov, I.V. Grigorieva, L.A. Ponomarenko, A.K. Geim, M. Polini.
arXiv:1509.04165

4.Electron Viscosity, Current Vortices and Negative Nonlocal Resistance in Graphene.
Authors: Leonid Levitov, Gregory Falkovich.
arXiv:1508.00836

5.Non-local transport and the hydrodynamic shear viscosity in graphene.
Authors: Iacopo Torre, Andrea Tomadin, Andre K. Geim, Marco Polini.
arXiv:1508.00363

6.Collision-dominated nonlinear hydrodynamics in graphene.
Authors: U. Briskot, M. Schu ?tt, I. V. Gornyi, M. Titov, B. N. Narozhny, A. D. Mirlin.
arXiv:1507.08946

7.Bulk and shear viscosities of the 2D electron liquid in a doped graphene sheet.
Authors: Alessandro Principi, Giovanni Vignale, Matteo Carrega, Marco Polini.
arXiv:1506.06030

Recommended with a commentary by Francisco Guinea, Imdea Nanoscience and University of Manchester.
|View Commentary|

DOI: 10.36471/JCCM_October_2015_02
https://doi.org/10.36471/JCCM_October_2015_02

Loops of Dirac points in three dimensions

Line of Dirac nodes in hyperhoneycomb lattices.
Authors:Kieran Mullen, Bruno Uchoa and Daniel T. Glatzhofer.
Phys. Rev. Lett. 115,026403(2015)

Recommended with a commentary by Rahul Nandkishore, CU Boulder.
|View Commentary|

JCCM_October_2015_03

Composite fermions meet Dirac

1.Is the composite fermion a Dirac particle?
Authors:Dam Thanh Son.
arXiv:1502.03446(2015)

2.Dual Dirac liquid on the surface of the electron topological insulator.
Authors:Chong Wang and T. Senthil.
arXiv:1505.05141(2015)

3.Particle-vortex duality of 2D Dirac fermion from electric-magnetic duality of 3D topological insulators.
Authors:Max A. Metlitski and Ashvin Vishwanath.
arXiv:1505.05142(2015)

4.Half-filled Landau level, topological insulator surfaces, and 3D quantum spin liquids.
Authors:Chong Wang and T. Senthil.
arXiv:1507.08290(2015)

5.The half-filled Landau level: the case for Dirac composite fermions.
Authors:Scott D. Geraedts, Michael P. Zaletel, Roger S. K. Mong, Max A. Metlitski, Ashvin Vishwanath, and Olexei I. Motrunich.
arXiv:1508.04140(2015)

Recommended with a commentary by Jason Alicea, Caltech.
|View Commentary|

DOI: 10.36471/JCCM_September_2015_01
https://doi.org/10.36471/JCCM_September_2015_01

Increasing Redundancy Exponentially Reduces Error Rates during Algorithmic Self-Assembly

Increasing Redundancy Exponentially Reduces Error Rates during Algorithmic Self-Assembly.
Authors:Rebecca Schulman, Christina Wright, and Erik Winfree.
ACS Nano 9,5760(2015)

Recommended with a commentary by Randall D.Kamien, University of Pennsylvania.
|View Commentary|

DOI: 10.36471/JCCM_September_2015_02
https://doi.org/10.36471/JCCM_September_2015_02

The “Levelized” cost of electricity and perovskite photovoltaics

1.High-efficiency solution-processed perovskite solar cells with millimeter-scale grains.
Authors:Wanyi Nie, Hsinhan Tsai, Reza Asadpour, Jean-Christophe Blancon, Amanda J. Neukirch, Gautam Gupta, Jared J.Crochet, Manish Chhowalla, Sergei Tretiak, Muhammad A.Alam, Hsing-Lin Wang, Aditya D.Mohite1.
Science 347,522(2015)

2.Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals.
Authors:Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A.Dowben, Omar F.Mohammed, Edward H.Sargent, Osman M.Bakr.
Science 347,519(2015)

3.Impact of microstructure on local carrier lifetime in perovskite solar cells.
Authors:Dane W.de Quilettes, Sarah M.Vorpahl, Samuel D.Stranks, Hirokazu Nagaoka, Giles E.Eperon, Mark E.Ziffer, Henry J.Snaith, David S.Ginger.
Science 348,683(2015)

4.Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field.
Authors:W.Tress, N. Marinova, T.Moehl, S.M.Zakeeruddin, Mohammad Khaja Nazeeruddina and M.Grätzela.
Energy Environ. Sci. 8,995(2015)

Recommended with a commentary by Albert Migliori, Los Alamos National Laboratory.
|View Commentary|

DOI: 10.36471/JCCM_September_2015_03
https://doi.org/10.36471/JCCM_September_2015_03

Tipping the Weyl cone

1.Quantum transport in Dirac materials: Signatures of tilted and anisotropic Dirac and Weyl cones.
Authors:M. Trescher, B. Sbierski, P.W. Brouwer, and E.J. Bergholtz.
Phys.Rev.B 91,115135(2015)

2.A new type of Weyl semimetals.
Authors:A A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, Z. Dai, and B.A. Bernevig.
arXiv:1507.01603(2015)

Recommended with a commentary by Carlo Beenakker, Leiden University.
|View Commentary|

DOI: 10.36471/JCCM_August_2015_01
https://doi.org/10.36471/JCCM_August_2015_01

Synthetic physics at the edge

Observation of chiral edge states with neutral fermions in synthetic Hall ribbons.
Authors:M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio,
M. Dalmonte and L. Fallani.
arXiv:1502.02495(2015)

Recommended with a commentary by Thierry Giamarchi, DQMP, University of Geneva.
|View Commentary|

DOI: 10.36471/JCCM_August_2015_02
https://doi.org/10.36471/JCCM_August_2015_02

Binding of realistically-shaped peptides to membrane curvature

Anisotropic membrane curvature sensing by antibacterial peptides.
Authors:Jordi Gómez-Llobregat, Federico Elías-Wolff, Martin Lindén
arXiv:1412.2371(2015)

Recommended with a commentary by Peter Olmsted, Georgetown University.
|View Commentary|

DOI: 10.36471/JCCM_August_2015_03
https://doi.org/10.36471/JCCM_August_2015_03

Quantum Surface Acoustics

1.Propagating phonons coupled to an artificial atom.
Authors:Martin V. Gustafsson, Thomas Aref, Anton Frisk Kockum, Maria K. Ekström, Göran Johansson, and Per Delsing.
Science 346,207(2014)

2.Surface acoustic wave devices on bulk ZnO crystals at low temperature.
Authors:E. B. Magnusson, B. H. Williams, R. Manenti, M.-S. Nam, A. Nersisyan, M. J. Peterer, A. Ardavan, and P. J. Leek.
Applied Physics Letters 106,063509(2015)

Recommended with a commentary by David DiVincenzo, RWTH Aachen, FZ Juelich.
|View Commentary|

DOI: 10.36471/JCCM_July_2015_01
https://doi.org/10.36471/JCCM_July_2015_01

Nonequilibrium Casimir forces: non-local, non-pairwise-additive, and not even extensive

Fluctuation-Induced Forces in Nonequilibrium Diffusive Dynamics.
Authors:A. Aminov, Y. Kafri, and M. Kardar
Phys. Rev. Lett. 114, 230602(2015)

Recommended with a commentary by Ramin Golestanian, Oxford University.
|View Commentary|

DOI: 10.36471/JCCM_July_2015_02
https://doi.org/10.36471/JCCM_July_2015_02

Experimental advances in the quantum anomalous Hall effect

1.Precise quantization of anomalous Hall effect near zero magnetic field.
Authors: A. J. Bestwick, E. J. Fox, Xufeng Fu, Lei Pan, Kang L. Wang, and D. Goldhaber-Gordon.
Phys.Rev.Lett. 114,187201(2015)

2.High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator.
Authors:Cui-Zu Chang, Weiwei Zhao, Duk Y.Kim, Haijun Zhang, Badih A. Assaf, Don Heiman, Shou-Cheng Zhang, Chaoxing Liu, Moses H. W. Chan, and Jagadeesh S. Moodera.
Nature Materials 14,473(2015)

3.Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous Hall state.
Authors:Cui-Zu Chang, Weiwei Zhao, Duk Y. Kim, Peng Wei, J.K. Jain, Chaoxing Liu, Moses H.W. Chan, and Jagadeesh S. Moodera.
arXiv:1505.01896

Recommended with a commentary by Bertrand I.Halperin, Harvard University.
|View Commentary|

DOI: 10.36471/JCCM_July_2015_03
https://doi.org/10.36471/JCCM_July_2015_03

Simultaneously ferromagnetic and antiferromagnetic MnAs layer

1.Coexistence of half-metallic itinerant ferromagnetism with local-moment antiferromagnetism in Ba0.60K0.40Mn2As2.
Authors: A. Pandey, B. G. Ueland, S. Yeninas, A. Kreyssig, A. Sapkota, Yang Zhao, J. S. Helton, J.W. Lynn, R. J. McQueeney, Y. Furukawa, A. I. Goldman, and D. C. Johnston.
Phys. Rev. Lett. 111, 047001(2013)

2.Itinerant ferromagnetism in the As 4p conduction band of Ba0.6K0.4Mn2As2 identified by X-ray magnetic circular dichroism.
Authors:B. G. Ueland, A. Pandey, Y. Lee, A. Sapkota, Y. Choi, D. Haskel, R. A. Rosenberg, J. C. Lang, B. N. Harmon, D. C. Johnston, A. Kreyssig, and A. I. Goldman.
Phys, Rev. Lett. 114, 217001(2015)

Recommended with a commentary by Atsushi Fujimori, University of Tokyo.
|View Commentary|

DOI: 10.36471/JCCM_June_2015_01
https://doi.org/10.36471/JCCM_June_2015_01

google

google