Topological magnetoelectric effect versus quantum Faraday effect

1. Observation of topological Faraday and Kerr rotations in quantum anomalous Hall state by terahertz magneto-optics.
Authors: K.N. Okada, Y. Takahashi, M. Mogi, R. Yoshimi, A. Tsukazaki, K.S. Takahashi, N. Ogawa, M. Kawasaki, and Y. Tokura
arXiv:1603.02113

2. Quantized Faraday and Kerr rotation and axion electrodynamics of the surface states of three-dimensional topological insulators.
Authors: L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N.P. Armitage.
arXiv:1603.04317

3. Observation of the universal magnetoelectric effect in a 3D topological insulator.
Authors: V. Dziom, A. Shuvaev, A. Pimenov, G.V. Astakhov, C. Ames, K. Bendias, J. Böttcher, G. Tkachov, E.M. Hankiewicz, C. Brüne, H. Buhmann, and L.W. Molenkamp.
arXiv:1603.05482

Recommended with a commentary by Carlo Beenakker, Leiden University.
|View Commentary|

DOI: 10.36471/JCCM_April_2016_01
https://doi.org/10.36471/JCCM_April_2016_01

Cavity Quantum Spin Resonance

Controlling spin relaxation with a cavity.
Authors: A. Bienfait, J.J. Pla, Y. Kubo, X. Zhou, M. Stern, C.C. Lo, C.D. Weis, T. Schenkel, D. Vion, D. Esteve, J.J.L. Morton and P. Bertet.
Nature 531,74(2016)

Recommended with a commentary by Steven M. Girvin, Yale University.
|View Commentary|

DOI: 10.36471/JCCM_April_2016_02
https://doi.org/10.36471/JCCM_April_2016_02

Knots in Polymers

Knots as a Topological Order Parameter for Semiflexible Polymers.
Authors: Martin Marenz and Wolfhard Janke.
Phys. Rev. Lett. 116,128301(2016)
arXiv:1506.07376

Recommended with a commentary by Kurt Kremer, Max Planck Institute for Polymer Research.
|View Commentary|

DOI: 10.36471/JCCM_April_2016_03
https://doi.org/10.36471/JCCM_April_2016_03

The hunt for the pairing glue in the cuprates

Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates.
Authors: Jin Mo Bok, Jong Ju Bae, Han-Yong Choi, Chandra M. Varma, Wentao Zhang, Junfeng He, Yuxiao Zhang, Li Yu, and X.J. Zhou.
Science Advances, 2, E1501329, 2016
arXiv: 1601.02493

Recommended with a commentary by Andrey Chubukov, University of Minnesota.
|View Commentary|

DOI: 10.36471/JCCM_March_2016_01
https://doi.org/10.36471/JCCM_March_2016_01

Closing the loopholes on Bell’s theorem

1. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers.
Authors: B. Hensen, H. Bernien, A. E. Dréau, A. Roisterer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abelen, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Switchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson
Nature 526, 682–686 (2015)

2. Strong Loophole-Free Test of Local Realism.
Authors: L. Shalm et al.
Phys. Rev. Lett., 115, 250402 (2015)

3. Significant-loophole-free test of Bell’s theorem with entangled photons.
Authors: M. Giustina et al.
Phys. Rev. Lett., 115, 250401 (2015)

Recommended with a commentary by Anthony J. Leggett, University of Illinois.
|View Commentary|

DOI: 10.36471/JCCM_March_2016_02
https://doi.org/10.36471/JCCM_March_2016_02

From monolayer back to bulk FeSe-based high-temperature superconductors

1. Surface electronic structure and isotropic superconducting gap in (Li0.8Fe0.2)OHFeSe.
Authors: X.H. Niu, R. Peng, H.C. Xu, Y.J. Yan, J. Jiang, D.F. Xu, T.L. Yu, Q. Song, Z.C. Huang, Y.X. Wang, B. P. Xie, X. F. Lu, N. Z. Wang, X. H. Chen, Z. Sun, and D. L. Feng.
Phys. Rev. B 92, 060504 (2015)

2. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.
Authors: L. Zhao, A. Liang, D. Yuan, Y. Hu, D. Liu, J. Huang, S. He, B. Shen, Y. Xu, X. Liu, L. Yu, G. Liu, H. Zhou, Y. Huang, X. Dong, F. Zhou, K. Liu, Z. Lu, Z. Zhao, C. Chen, Z. Xu and X. J. Zhou.
Nat. Commun. 7, 10608 (2016)

Recommended with a commentary by Atsushi Fujimori, University of Tokyo.
|View Commentary|

DOI: 10.36471/JCCM_February_2016_01
https://doi.org/10.36471/JCCM_February_2016_01

Soft Matter at the nanoscale constitutes an information-transporting medium

1. Allosteric Dynamic Control of Binding.
Authors: F. Sumbul, S.A.E. Acuner-Ozbabacan and T. Haliloglu.
Biophys. J., 109, 1190-1201 (2015)

2. Quantifying information transfer by protein domains: Analysis of the Fyn. SH2 domain structure
Authors: T. Lenaerts, J. Ferkinghoff-Borg, F. Stricher, L. Serrano, J. W. H. Schymkowitz and F. Rousseau.
BMC Structural Biology, 8:43 (2008)

Recommended with a commentary by Tom McLeish, Durham University.
|View Commentary|

DOI: 10.36471/JCCM_February_2016_02
https://doi.org/10.36471/JCCM_February_2016_02

Optical second harmonic generation reveals hidden odd-parity order in Sr2IrO4

Evidence of an odd-parity hidden order in a spin-orbit coupled correlated iridate.
Authors: L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R. Flint, T. Qi, G. Cao and D. Hsieh.
Nature Phys. 12, 32 (2016)

Recommended with a commentary by Joseph Orenstein, Department of Physics, UC Berkeley.
|View Commentary|

DOI: 10.36471/JCCM_February_2016_03
https://doi.org/10.36471/JCCM_February_2016_03

Frank Kasper Phases of Squishable Spheres and Optimal Cell Models

1.Selective assemblies of giant tetrahedra via precisely controlled interactions.
Authors: M. Huang, C.H. Hsu, J. Wang, S. Mei, X. Dong, Y. Li, M. Li, H. Liu, W. Zhang, T. Aida, W.B. Zhang, K. Yue and S. Z. D. Cheng.
Science 348, 424(2015)

2.Sphericity and symmetry breaking in the formation of Frank-Kasper phases from one component materials.
Authors: S. Lee, C. Lieghton and F. S. Bates.
Proc. Nat. Acad. Sci. USA 111, 17723(2014)

3.? phase formed in conformationally asymmetric AB-type block copolymers.
Authors: N. Xie, W. Li, F. Qui, A.C. Shi.
ACS MacroLetters 3, 906(2014)

Recommended with a commentary by Gregory M. Grason, Polymer Science and Engineering, UMass Amherst.
|View Commentary|

DOI: 10.36471/JCCM_January_2016_01
https://doi.org/10.36471/JCCM_January_2016_01

Getting a grip on quantum criticality in metals

1.Ising nematic quantum critical point in a metal: a Monte Carlo study.
Authors:Yoni Schattner, Samuel Lederer, Steven A. Kivelson, Erez Berg.
arXiv:1511.03282

2.The nature of effective interaction in cuprate superconductors: a sign-problem-free quantum Monte-Carlo study.
Authors: Zi-Xiang Li, Fa Wang, Hong Yao, Dung-Hai Lee.
arXiv:1512.04541

3.Competing Orders in a Nearly Antiferromagnetic Metal.
Authors: Yoni Schattner, Max H. Gerlach, Simon Trebst, Erez Berg.
arXiv:1512.07257

Recommended with a commentary by Jörg Schmalian, Karlsruhe Institute of Technology.
|View Commentary|

DOI: 10.36471/JCCM_January_2016_02
https://doi.org/10.36471/JCCM_January_2016_02

Measuring Entanglement by Swapping Quantum Twins

Measuring entanglement entropy through the interference of quantum many-body twins.
Authors: Rajibul Islam, Ruichao Ma, Philipp M. Preiss, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Markus Greiner.
arXiv:1509.01160

Recommended with a commentary by Ashvin Vishwanath, UC Berkeley.
|View Commentary|

DOI: 10.36471/JCCM_January_2016_03
https://doi.org/10.36471/JCCM_January_2016_03

Spontaneous emergence of autocatalytic information-coding polymers

Spontaneous emergence of autocatalytic information-coding polymers.
Authors: Alexei V. Tkachenko and Sergei Maslov.
J. Chem. Phys. 143,045102(2015)

Recommended with a commentary by Alexander Grosberg, NYU.
|View Commentary|

DOI: 10.36471/JCCM_December_2015_01
https://doi.org/10.36471/JCCM_December_2015_01

Experimental Studies of Many-Body Localization in Quasi-Random Optical Lattices

1. Observation of many-body localization of interacting fermions in a quasi-random optical lattice.
Authors: M. Schreiber, S. S. Hodgman, P. Bordia, Henrik P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider and I. Bloch.
Science 349,842(2015)

2. Coupling Identical 1D Many-Body Localized Systems.
Authors: P. Bordia, H. P. Luschen, S. S. Hodgman, M. Schreiber, I. Bloch and U. Schneider.
arXiv:1509.00478

Recommended with a commentary by Catherine Kallin, McMaster University.
|View Commentary|

DOI: 10.36471/JCCM_December_2015_02
https://doi.org/10.36471/JCCM_December_2015_02

PARADIGM LOST – Where the Missing Entropy Goes in Spin Ice

Absence of Pauling’s Residual Entropy in Thermally Equilibrated Dy2Ti2O7.
Authors: D. Pomeransky, L.R. Yaraskavitch, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, and J.B. Kycia.
Nature Physics, 9,353(2013)

Recommended with a commentary by A. P. Ramirez and B. S. Shastry, University of California, Santa Cruz.
|View Commentary|

DOI: 10.36471/JCCM_December_2015_03
https://doi.org/10.36471/JCCM_December_2015_03

Inserting defects into graphene: response by curvature and strain

Bending Rules in Graphene Kirigami.
Authors: B.F. Grosso and E.J. Mele.
Phys. Rev. Lett. 115,195501(2015)

Recommended with a commentary by Benny Davidovitch, Physics Department, UMass Amherst..
|View Commentary|

DOI: 10.36471/JCCM_November_2015_01
https://doi.org/10.36471/JCCM_November_2015_01

Even-denominator fractional quantum Hall physics in ZnO

Even-denominator fractional quantum Hall physics in ZnO.
Authors: J. Falson, D. Maryenko, B. Friess, D. Zhang, Y. Kozuka, A. Tsukuzaki, J. H. Smet, and M. Kawasaki.
Nature Physics 11,347(2015)

Recommended with a commentary by Bertrand I. Halperin, Harvard University.
|View Commentary|

DOI: 10.36471/JCCM_November_2015_02
https://doi.org/10.36471/JCCM_November_2015_02

Colored Noise Models of Active Particles

1. Multidimensional stationary probability distribution for interacting active particles.
Authors: C. Maggi, U.M.B. Marconi, N. Gnan, and R. Di Leonardo.
Scientific Reports, 5,10742(2015)
2. Effective interactions in active Brownian suspensions.
Authors: T.F.F. Farage, P. Krinninger, and J.M. Brader,
Physical Review E 91,042310(2015)

Recommended with a commentary by Mike Cates, University of Cambridge, and Cesare Nardini, University of Edinburgh.
|View Commentary|

DOI: 10.36471/JCCM_October_2015_01
https://doi.org/10.36471/JCCM_October_2015_01

Quantum Hydrodynamic Transport in Graphene

1.Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene.
Authors: Andrew Lucas, Jesse Crossno, Kin Chung Fong, Philip Kim, Subir Sachdev.
arXiv:1510.01738

2.Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene.
Authors: Jesse Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, Achim Harzheim, Andrew Lucas, Subir Sachdev, Philip Kim, Takashi Taniguchi, Kenji Watanabe, Thomas A. Ohki, Kin Chung Fong.
arXiv:1509.04713

3.Negative local resistance due to viscous electron backflow in graphene.
Authors: D.A.Bandurin, I.Torre, R.Krishna Kumar, M.Ben Shalom, A. Tomadin, A.Principi, G.H. Auton, E.Khestanova, K.S. Novoselov, I.V. Grigorieva, L.A. Ponomarenko, A.K. Geim, M. Polini.
arXiv:1509.04165

4.Electron Viscosity, Current Vortices and Negative Nonlocal Resistance in Graphene.
Authors: Leonid Levitov, Gregory Falkovich.
arXiv:1508.00836

5.Non-local transport and the hydrodynamic shear viscosity in graphene.
Authors: Iacopo Torre, Andrea Tomadin, Andre K. Geim, Marco Polini.
arXiv:1508.00363

6.Collision-dominated nonlinear hydrodynamics in graphene.
Authors: U. Briskot, M. Schu ?tt, I. V. Gornyi, M. Titov, B. N. Narozhny, A. D. Mirlin.
arXiv:1507.08946

7.Bulk and shear viscosities of the 2D electron liquid in a doped graphene sheet.
Authors: Alessandro Principi, Giovanni Vignale, Matteo Carrega, Marco Polini.
arXiv:1506.06030

Recommended with a commentary by Francisco Guinea, Imdea Nanoscience and University of Manchester.
|View Commentary|

DOI: 10.36471/JCCM_October_2015_02
https://doi.org/10.36471/JCCM_October_2015_02

Loops of Dirac points in three dimensions

Line of Dirac nodes in hyperhoneycomb lattices.
Authors:Kieran Mullen, Bruno Uchoa and Daniel T. Glatzhofer.
Phys. Rev. Lett. 115,026403(2015)

Recommended with a commentary by Rahul Nandkishore, CU Boulder.
|View Commentary|

JCCM_October_2015_03

Composite fermions meet Dirac

1.Is the composite fermion a Dirac particle?
Authors:Dam Thanh Son.
arXiv:1502.03446(2015)

2.Dual Dirac liquid on the surface of the electron topological insulator.
Authors:Chong Wang and T. Senthil.
arXiv:1505.05141(2015)

3.Particle-vortex duality of 2D Dirac fermion from electric-magnetic duality of 3D topological insulators.
Authors:Max A. Metlitski and Ashvin Vishwanath.
arXiv:1505.05142(2015)

4.Half-filled Landau level, topological insulator surfaces, and 3D quantum spin liquids.
Authors:Chong Wang and T. Senthil.
arXiv:1507.08290(2015)

5.The half-filled Landau level: the case for Dirac composite fermions.
Authors:Scott D. Geraedts, Michael P. Zaletel, Roger S. K. Mong, Max A. Metlitski, Ashvin Vishwanath, and Olexei I. Motrunich.
arXiv:1508.04140(2015)

Recommended with a commentary by Jason Alicea, Caltech.
|View Commentary|

DOI: 10.36471/JCCM_September_2015_01
https://doi.org/10.36471/JCCM_September_2015_01

google

google